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Abstract Advances in Virtual Reality (VR) systems, Intelligent Tutoring
Systems and Agent Technology make it possible to design and develop
Virtual Training Environments, where the trainees can immerse themselves
and interact directly with the learning domain. This paper presents the
Interaction Specification Workspace (ISW) architecture for the specification
and design of virtual environments for training purposes. ISW architecture
provides the interaction designer with the capability to specify the training
interaction with the virtual environment using the Virtual Reality Multi Flow
Graph (VR-MFQG) as the underlying interaction specification model. ISW
architecture implements a design space, where the processes of interaction
specification and design of virtual training environments take place inside a
three-dimensional virtual environment, the objects of which are tools by
themselves. Using the components of such a design space, the designer
composes interaction sessions that will be executed when the VR application
executes. Current VR development platforms use diverse metaphors for the
design and implementation of virtual environments. In order to bridge the
consequent semantic gap between designers (the authors of wvirtual
environments for training) and users (the trainces) of such environments, ISW
proposes the “virtual programming” metaphor, as the natural evolution of
contemporary visual programming: inside a common virtual workspace, the
designer can associate the abstract objects (the components of the VR-MFG)
with "actual" objects of the target virtual environment (kept in a “world”
database) and apply a number of agent templates with training capabilities.

1 Introduction

In Graphical User Interfaces (GUIs) of conventional programs the user “feeds” the
application program with data or acts on some data via standard input devices such as
keyboard and mouse, and perceives the information through the screen display. In
order to do this, a number of interface components (e.g. buttons, list-boxes, etc.) have
been invented, that behave as “handles” allowing the end-user to manipulate the data
and information processed by the application program. These user interface
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components receive the events caused by the user, and display the information
produced by the program, serving both the user interface designer, who chooses
among a limited number of these standard components to construct the user interface
of the application program, and the end-user who learns how to operate on these
specific user interface components. Things would be complicated for the end-users if
user interface’ designers used custom-made “controls”, which did not fall within the
known categories. In addition, every contemporary application program, (e.g. word
processing packages, spreadsheets, multimedia tools and authoring systems for
educational programs) uses the desktop metaphor as the underlying interaction model
through a WIMP (windows-icons-menus-and-pointing) type user interface. In these
programs, the interface point of view has the leading-role, with the creation of ease-
to-use and functional controls and widgets. The inferactivity point of view follows as
a consequence, due to the limited capabilities provided by the standard user interface
components which are restrictive for the user-computer dialogue representation.
Virtual Reality (VR) applications tend to unify the application program and its user
interface: the user interface becomes transparent and can not be distinguished from
the “pure” application. VR uses techniques for immersing the user into a computer
simulated environment where natural behavior is the interaction paradigm. In a
virtual environment (VE) the application functionality and the application interface
are not visually or physically separated, but only conceptually. The user interfaces of
conventional application programs (even those with Graphical User Interfaces) serve
as a representation of that functionality, and are constructed in a way which conveys
to the user what the program can do. In the case of VR applications, the term
functionality needs to be redefined as what a person can do with the computer
program rather than what a computer program has the capacity to do [10]. According
to this, the user interface of a VR application must tell the user what he can do inside
the virtual environment, as well as, indicate the correct way in which he must interact
with the application program itself in order to accomplish the desired tasks or to
achieve the desired goals. To construct user interfaces which satisfy these
requirements, the specification and design practices must concentrate more on the
interactivity issues, rather than on the inferface issues, since the latter are embedded -
into the VR applications. Of course, in VR (as well as any other) applications the user
does not interact with the entire application, but with specific components of the VE.
Thus, in a VR application which is composed mostly of computer-generated three
dimensional models, the user is able to navigate, push, move, manipulate or even
construct new objects inside the VE. Not all VE objects are interactive but every
interactive object needs to be equipped with a number of “controls” which serve as
the interface components for a VR application. However, like the physical objects
that exist into our surrounding real environment, their virtual counterparts have their
own “knobs”. For example, all the members that belong to a specific class of objects
(e.g. all the doors) can be handled using these common fundamental control “knobs”,
inside the corresponding virtual environment. This is analogous to the conventional
WIMP interfaces: if a window class with one system-menu, one minimize-restore and
one close button is specified, then all the windows (members of the same class) are
expected to be equipped with at least these controls. In any case, the existence of
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these “controls” or “knobs” is not restrictive for the representation of the user-
computer dialogue, as it happens in conventional application programs, since these
“knobs” refer to the handlers of the objects, and not to the Ul widgets. So, the user
interface embodied into a VR application ought to be depended on the application
domain, rather than the platform used to implement the application. However, during
design and development of VR applications the problem arises when conceptual and
“abstract” information objects must be visualized.

The problem of bridging the gap between a user’s goals and intentiens, and the fow-
level commands and mechanisms required by any application program in order to
realize those goals and intentions still exists, despite of the many attempts that have
been made, through the creation of effective Uis. The VE designer may find the
solution to this problem if he takes advantage of the VR applications’ special nature.
In general, application programs provide a user interface (even a GUI) as a medium
to help both user and system bridge the above mentioned gap. This gap can be
expressed in two ways: as the common medium where user and system border on
(optimistic view), or as the separating line between the user and the system
(pessimistic view). VR applications introduce themselves as a user interspace (rather
than a wser interface), a concept which is closer to the optimistic view. This user
interspace realizes the concept of the interface not simply as a means where a user
and a computer system represent themselves to each other, but as a shared context for
action where both are agents [21].

Every user’s goal and intention in an application program (e.g. modify a database,
delete a document, access a site on the web) is being accompanied by the problem:
how this geal can be achieved? In conventional application programs the solution is
provided by the user interface, which must guide the user to accomplish the desired
tasks. It is obvious that the user interface has to provide the appropriate widgets and
components that must be used by the user in order to accomplish the desired tasks.
Concerning VEs, the solution to the same problem is embodied inside the virtual
environment itself. The nature of the virtual environment objects shows the user the
correct way of interaction, in the sense that the user must perform almost physical
actions n order to interact with the VE objects. But, the friendlier the user interface
is, the more difficult it is to design it. So, the designers of VEs have to establish
unambiguous and robust interaction techniques, providing the user with obvious ways
of interaction so that he does not worry about specific controls that exist in the virtual
environment but concentrates solely on his specific goals. Moreover, the purpose of
VR applications is to provide the user with the capability to perceive with more
natural ways the information produced by an application program and interact with
complex data. This means that the user’s goals and intentions are transiated not to
abstract actions (e.g. click a button, roll up/down a slider, etc.) but to physical
movements, often directly onto the objects of the VE. This forces the VE developers
to provide the user with ciearly defined goals. As shown and statistically measured in
[24], most users focus on what there is to do, and what is already done, inside the
virtual environment and not only on how to do it.
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So, the VE designer deals with the interaction design rather than the interface design.
Consequently, the specification and design tools for VR applications must provide
ways to express interaction, rather than to “build” the interface; this is the major goal
to the achievement of which our work attempts to contribute.

1.1 Related Work

The prime effort for the establishment of VR as a new technology and the
development of virtual environments was on the high quality graphics that should be
supported, the construction of three-dimensional objects and virtual scenes and the
development of new hardware devices that could be used for interacting with the
constructed VEs [14]. Architectures and systems for virtual world building, VE
modeling for various application domains and object manipulation led to systems
which combine easy object modeling, creation and manipulation along with
(sometimes intelligent) object behavior [12, 30, 2]. Also, approaches which focus on
the visualization of physical systems in virtual environments and on the graphical
representation of the information retrieval process make use of VE technology as
presented in [23], [11].

Recently, interaction design was recognized as an important issue for the
implementation of highly interactive VR systems, that exceed a simple 3-D interface,
and many attempts have been made in this direction. MR (Minimal Reality) Toolkit
[27] is a set of software tools for the production of virtual reality systems and other
forms of three dimensional user interfaces. It consists of subroutine libraries, device
drivers, support programs and a geometry and behavior description language.
Immersive Metaphors project [25], focuses on the design and development of a
consistent collection of the immersive techniques and metaphors which would be as
powerful and ubiquitous as techniques which are used to build present day 2D
Graphical User Interfaces. It is claimed that interface designers could use these
techniques and guidelines to build 3D immersive user interfaces quickly and with
high quality of interaction. Virtual Reality Interface Toolkit project [6] aims to
develop a 3D user interface software toolkit which would provide all necessary 3D
widgets, interaction techniques and tools for programmers to design and implement
3D user interfaces for various application domains. A developer can use the provided
widgets and techniques or construct custom interface elements by inheriting attributes
from existing objects. For the user, the applications built with the toolkit will have a
consistent generic 3D user interface, based on a single paradigm that has been
evaluated by theoretical and experimental studies. The focus of the Interface ToolKkit
is to design and evaluate software architectures which allow seamless integration of
the 3D interaction techniques and widgets with VR world building functionality. VB2
[15] architecture for the construction of three-dimensional interactive applications
proposed that the system’s state and behavior are uniformly represented as a network
of interrelated objects. The interaction techniques used in this architecture, among
others (direct manipulation, gestural input, etc.) included three-dimensional virtual
tools, which offered an interaction metaphor to control the VE models’ information.
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Moreover, the evolution of VB2, the AVIARY [29] architecture proposes that
everything that lies inside a Virtual Environment is treated as an object. Then each
single object which is presented to the user is an artifact, and objects that cause the
artifacts are called demons [28]. Conceptual Design Space [8], attempts to provide
virtual tools and 3D interface elements for the construction of VEs. 3D menu
systems, widgets, dialog boxes, tool palettes, etc., are used in order to provide a new
interaction design metaphor, where users can be able to create virtual worlds, while
immersed in one themselves.

The architectures and systems mentioned above are general purpose systems and have
not being specifically designed for the development of VEs for training. This
application area can exhibit theoretical frameworks and working prototypes [35, 9,
22, 17, 18]. Moreover, almost all of the above mentioned architectures, systems and
tools, and most commercial VR development platforms [33, 36] use diverse
metaphors for the design and implementation of virtual environments. The designer
uses tools with conventional user interface and produces applications with three-
dimensional and immersive interfaces. So, the problem which arises is twofold: how
to provide the authors-designers with appropriate tools to design the interaction and
instructional aspects of the desired Virtual Training Environment, and how to bridge
the consequent semantic gap between designers and users of Virtual Training
Environments.

The proposed solution is composed of the establishment of a Pefri-Net based
graphical formal model for interaction specification with capabilities to represent the
instructional aspects of the final application, and an architecture which implements a
virtual reality tool for interaction specification, proposing the “virtual programming”
metaphor, as the natural evolution of contemporary visual programming. The ISW
architecture, along with the underlying graphical formal model is presented in the
next section. An example showing the model capabilities is presented in section 3 and
the paper concludes with discussion and future work in section 4.

2 The Interaction Specification Workspace (ISW)

The basic components of the Interaction Specification Workspace are the Virtual
Reality Multi Flow Graphs (VR-MFG) graphical model and the ISW Architecture.

2.1 The ISW underlying Interaction Specification Model (VR-MFQG)

VR-MFG is a graphical formal model that can be used for the specification and
design of Virtual Reality Agent-based Training Applications. The model is defined as
an extension of IMFG [19, 20], a model used for the specification and design of
conventional interactive applications, and incorporates the cognitive features and the
powerful analysis techniques of Petri Nets.
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Virtual environments due to the three-dimensional graphics they provide, are the

ideal platform for representing the elements used by VR-MFG (cubes, spheres, cones,

etc.) and the visualization of the concepts these graphical elements reflect. On the

other hand, the graphical notation of VR-MFG (mostly adopted from IMFG) makes

the specific model one of the most suitable, among other similar approaches [16] for

interaction specification in VEs. The usage of a VR environment as interaction

specification workspace provides:

e Reduction of the space needed for the entire specification due to the capability of
the three-dimensional graphical objects to "include" other objects.

o Supervision over the specification [34].

e Definition of different views and data abstraction due to the "depth" provided by
the third dimension.

e Uniformity between the design space and the executable one.

o Establishment of a common context (the three-dimensional visual representation)
for both the author-designer and the user-trainee, enabling the designer to think in
user terms.

As a virtual environment consists of inferactive (active) and non-interactive (passive)
virtual elements (e.g. objects, concepts, abstractions, information), the VR-MFG
which models this VE consists of active (actors) and passive (links) components.
Although there is a close relation between the VE’s elements and the VR-MFG
components, there is an indirect correspondence between them. An active VR-MFG
component does not refer directly to an interactive element of the VE, but to the task,
goal or high and lower level action into which this element is involved. e
correspondence between a passive VR-MFG component and a non-interactive VE's
element, is analogous, since a passive VR-MFG component refers to the visualization
of the different information flows that occur in a Virtual Reality interactive
application.

Analytically, the components of Virtual Reality-MFG model are:

actors (that correspond to the actions, tasks or goals of the VE’s elements), which
model the interactive responses that must be performed by the agents that participate
in a VE, as a consequence of the occurrence of an event. Events may be caused by
other agents, since the user, the objects of the VE and the VE itself, are all agents that
act inside a common space. Actors are always preceded and followed by

links (that correspond to the non-interactive VE's elements), which describe the
situation that precedes and that results from a user action, through the storage of

tokens (that correspond to the data or/and control information that exist into the VE),
which represent abstract data or control structures that are produced or consumed by
the VR-MFG components.

All the actors that are ready-to-fire (that is, which may fire after the next event) are
maintained in the actor-ready list . Moreover, an actor can be viewed as an integral
goal, which can be achieved by the satisfaction of a number of sub-goals.
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Actors are described by: a name, a set of input and a set of output links, which
precede and follow the actor, a set of firing rules, which represent the actor’s
behavior, since the left hand side forms the pre-conditions (that are kept in its input
links) and the right hand side includes the post-conditions (that are kept in its output
links), a method, which represents the lower level actor’s functionality, that is, how
the actor handles its input data and produces its output ones, and a fype.

There are four types of actors, namely:

® Action actors: they represent a single response which is performed by a VE agent.
These actors do not have any VR-MFG represented internal structure. The rules
part of each action actor defines how this single task is implemented. VR-MFG
does not give a clear description of the task to be done, but specifies the goal
decomposition (or the task analysis) in order for the goal to be achieved (or the
task to be completed). Action actors define the way the VE’s agents interface with
the domain-dependent functional core of the application, via single interactive
responses.

 Confext actors: their internal structure represents the task or goal decomposition
into sub-tasks or sub-goals, via a number of other context or action actors.

* Guide actors: similar to Library IMFG actors, are used to represent the way the
task or goal decomposition is achieved. AND and OR decomposition are
provided, since these two fundamental actions can model any task or goal
decomposition. These two decomposition styles represent a minimal functionality;
also, serve the formality and facilitate the conversion of the VR-MFG graphs to a
corresponding petri-net. For complex task representation (e.g. task interleaving,
task interruption etc.), VR-MFG model provides the actor-ready list, the condition
links and the link usage properties (read-only, debit, OK). Of course there is the
capability to add more guide actors in the future.

© Virtual actors: used for a graphical grouping of actors, without any other
significance, but may serve as reusable components during design process.

Links are described by: a name, a set of input and a set of oulput actors that produce
and consume the tokens stored in this link, a method, which is performed upon the
link’s tokens, and a type. The definition of link types distinguishes among the type of
tokens they store. Each link type stores a specific kind of tokens. This allows the
designer to model the different types of information (e.g. data, control) that exist
inside a VR Application, and permits system design from alternative perspectives.
VR-MFG links are typed so that the different information flows that occur in a VR
application are distinguished and each information flow can have its own
visualization. The seven types of links, are:

Event links: describe the events that are caused by the agents that participate in the
VR application. Users are also treated as agents in VR-MFG, so event links can be
used in order to describe any external or internal communication of events. In VEs,
events may be composite, having their own existence, unlike applications that use a
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2D GUI, where events can be caused by simple actions (e.g. click, scroll, key-press,
etc.). For example, event generation process in numerous cases [7] (e.g. where
gesture interaction methods are used), includes an internal structure. Moreover, this is
recommended by a number of diverse interaction methods which have already
proposed in [5, 31].

VR-MFG provides event links decomposition, so the designer can explicitly specify
how events can be caused, representing the internal structure of event links.

Perception links: a special kind of event links, which are used in order to represent
system responses that are directed to the input-output devices, in order to provide the
user of the VR application with the capability to perceive with natural ways special
VE responses (e.g. haptic feedback, position orientation feedback activities etc.).
These are event links with internal structure, that represent any cognitive perceptual
state of the user agent and the tokens they contain are produced and consumed
exclusively by the user (or the user agent). Perception links are designed in order to
make VR-MFG model adaptive to any kind of interaction technique (e.g. direct or
indirect manipulation of VR objects, immersion techniques where input is entered via
sensors and output is processed by advanced hardware interface devices) and permit
platform-independent interaction specification.

Condition links: represent the global or local conditions that precede and result from
any agent action that takes place into the VE. Consequently they represent priority of
execution and availability of actors. Moreover condition links describe whether any
of the VE agents is ready to process another agent’s action, that will lead to the
achievement of a subgoal, or to the completion of a specific task, into the VE.

Data links: represent the data or control flow, into the VR application. Moreover, they
represent the content of messages that pass between the participating agents.

Context links: represent the context, into which a number of interactions are
performed. Consequently, context links describe the context to which a specific goal
or task belongs and indicate whether a major goal is decomposed into sub-goals, so
that a new “session” starts for the accomplishment of each sub-goal. Moreover,
context links contribute to the representation of the system’s memory and knowledge
issues which are of major importance for any VR agent-based Application. Every
actor that belongs to a specific context knows the goal of all the other actors that
belong in the same context and the VR-MFG can model long-term memory by
maintaining the actor ready list and the content of context-out links, since the short-
term memory is represented directly inside the current context.

Communication links: model the effects that the separate micro-worlds existing inside
the entire VR application may have on one another, since there exists a separate VR-
MFG for each virtual micro-world.

Learning Links: represent the learning issues which rule the training interactions and
the student-trainee dialogue. These links are founded upon alternative instructional
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strategies and provide representation of autonomous agents with instructional
capabilities [26].

VR-MFG, being graphical tool, has its special symbolism which is shown in F igure 1.

ata

LINKS

Fig. 1 VR-MFG symbolism

2.2 ISW architecture

The Interaction Specification Workspace is a software architecture for the
specification and design of 3D virtual training environments. The overall system
structure includes three major modules: The Prototype Interaction Editor (Practor),
The Analysis and Evaluation module and the Prototyping facility; the application
content, is an external entity which belongs partially to ISW since the pure content
(objects, lights, real-time graphics etc.) can be produced by a third party VR
development tool. The system structure is presented in Fi gure 2.
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Fig. 2 Overall structure of ISW

ISW provides the interaction designer with the capability to use the Prototype
Interaction Editor in order to construct the graphs that represent the interactive and
training sessions of the application. The workspace of the Prototype Interaction Editor
1s an abstraction of the virtual tutoring environment which is constructed. The actual
objects contained into the final virtual environment have their own abstract
representation into the workspace, enabling the designer to think and design in user
terms.

VR-MFG, described in the previous section, is used as the underlying ISW model.
The translator processes the interaction graphs at a low-level of lexical and syntactical
detail. The analyzer evaluates the correctness of the produced graphs and the integrity
of the interaction sessions, and produces and updates the interaction data structure.
The analyzer can also be used as a wizard, which can guide the designer during the
authoring process.

The prototyping facility enables the user to swap between the 3D graphical Prototype
Interaction Editor and the virtual environment which is under construction. This
enables the designer to take the place of the user-trainee and check if the application
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meets its initial interaction and learning specification. At this point, the designer is
able to evaluate the results which are related with the interaction and instructional
design rather than the results related with the functionality of the entire application.

The tools of ISW can be used as "add-ins" utilities for a third-party VR development
environment, extending the capabilities of this environment. The author-designer uses
this VR development tool in order to construct the "pure" application content.
According to the methodology the ISW proposes, he is able to use the 3D Graphical
Prototype Interaction Editor, in order to specify the interaction aspects of the final
virtual environment. The Analysis and Evaluation module checks the graphs for
correctness and the specification is recorded in the Inferaction Data Structure. This
data structure along with the Dialogue and Presentation Managers "tie up" the ISW
and the VR development environment, in order to form a loosely coupled system. The
interaction specifications of Interaction Data Structure are applied on the objects of
the World Information Database which is updated via the VR development
environment.

3D graphical Prototype Interaction editor. The designer uses a library of 3D screen

components that represent the components of the VR-MFG and composes interaction

graphs. The 3D graphical Prototype Interaction Editor, is independent from the target

application content, and the designer can associate the abstract VR-MFG components

with "actual" objects of the target virtual environment. The 3D design workspace is a

virtual environment by itself, its objects are of some standard kind of shape (cube,

sphere, cylinder, line, etc.), and do not need to have gravity and velocity attributes.

However, the user-designer can:

e move and rotate the objects, setting their position, orientation and placement,

e add colors to them, emphasizing to special sub-graphs,

e group them into bigger structures, reducing the overall graphs complexity

e isolate groups of them as individual graphs and place them back to the library
(reusability of library components),

o associate them (individually or as groups) with the "actual" objects that participate
into the target application.

Analysis and Evaluation module. The Analysis and Evaluation component is also

application independent. Its basic components are:

e the translator, which is responsible for processing the composed 3D graphs at a
low level of lexical and semantic detail. The lexical and semantic data that result
are further processed by

o the analyzer which is responsible for the evaluation of the correctness of the
produced graphs, the integrity of the constructed interaction sessions, and the
modification of the interaction data structure. This data structure contains the
interactivity and behavioral characteristics of the objects (e.g. data about the types
of the objects, the tasks that are performed by these objects, the context, the user
goals and intentions, the driver intelligent agents that are associated with specific
objects, etc.).
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Prototyping Facility. The Prototyping Facility is composed of:

the Dialogue Manager, which uses the interaction data structure in order to form
the dialogue between the user and the objects of the target application or between
the objects themselves, is responsible for the application of the intelligent and
interactivity characteristics of the "actual" objects of the target application, and the
dialogue control during the prototyping process (messages, information boxes,
etc.), and

the Presentation Manager, which interrelates the intelligent and interactivity
characteristics of the objects with the physical properties (position, orientation,
size, etc.) of the "actual" target application's objects. The former are provided by
the interaction data structure and the Dialogue Manager and the latter by the
World Information Database which is constructed and updated via the design
editors of the third-party Virtual Reality Development Tool. The Presentation
Manager is also responsible for the visualization of the agents that participate
either as stand alone entities or as driver programs which are associated with the
user or with other objects of the target application, and the demonstration of the
objects behavior as they interact with each other or with the user through the
“transparent” VR user interface.

3 An example application

Any VR Application can be viewed as a collection of different VEs (micro-worlds)
that constitute the entire application. These multiple worlds may be concurrently
active, just like a conventional GUI application, where several windows are open and
running different applications, but only one can have the user focus. The aim of ISW,
is not to specify the concurrency for the entire application, but to split the design
effort for concurrency, among these multiple worlds, via the use of VR-MFG.

The designer is provided with the capability to associate the abstract objects (the
components of the VR-MFG) with "actual" objects of the target virtual environment
kept in the object database, and apply a number of agent templates, inside a common
virtual workspace (Figure 3).
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Fig. 3 Snapshot of the common virtual workspace where abstract objects (the components of
the VR-MFG) are associated with "actual” objects of the target virtual environment and
appropriate agent templates with instructional capabilities are applied.

DrIVE [13] 1s a virtual training environment intended to train novice car-drivers in
common driving situations. It is based on desktop VR, with a minimum of
requirements in processing power and data storage. DrIVE is a medium scale
application and consists of three main parts: driving lessons, tests for the trainee, and
Jree driving with on-line guidance.

The aim of the application is to transfer experience on the domain of driving
behavior, which can be done using the synthetic experience that virtual environments
are able to provide rather than actual practicing which involves obvious dangers.
DrIVE has been developed with Superscape VRT software. The physical properties
were attached to the objects which constitute the DrIVE environment using the
appropriate editors. In the first system version the interactive properties were
extracted informally and code was assigned incrementally and directly into the
objects using SCL (a C-like programming language with event driven code
execution) in order to implement these properties. In the second system version, the
third part of fiee driving has been designed afresh, using VR-MFG for the interaction
design, in the framework of ISW, before any code was assigned to the objects. Then,
the implementation of this part was realized, using this formal specification. The
benefit was twofold: evaluation of VR-MFG and a substantiated system. Moreover, a
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temporal comparison shows that for the implementation of the free driving part with
the classical method three person-months were needed, and only two person-months
using VR-MFG in the interaction specification phase. The design team designed the
VR-MFG graphs by hand instead of the 3D Graphical Interaction Editor and typed
the intermediate code which constitutes the Interaction Data Structure in text files the
same way, because the editor and the analysis modules were under development.

The Crossroads example refers to the third part of the application where the user-
trainee is the driver of one of the virtual environment’s cars. His car reaches the
crossroads, and two other cars are coming from the opposite directions.

The user plan-goal decomposition approach will be applied in order to specify the
way the user must pass the crossroads safely, which is the main user-goal. This goal
is directly decomposed in three sub-goals: Stop the car before the crossroads, Check
and give priorities, and Pass.

Two representative graphs will be presented, one for the representation of the overall
goal (Cross-Goal), and the other for the representation of the Stop-subgoal. In Figure
4 the overall goal is decomposed into the three sub-goals, using the AND guide actor
(represented with a cylinder which includes all the other VR-MFG components).

Fig. 4 The Cross-Goal represents the user-intention, and the Cross User action the
actions he must perform to achieve this goal. Inside this AND Guide actor, there exist
the STOP () and the CHECK () context actors, and the PASS /! action actor.
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The Stop action event link (represents the user actions in order to stop the car) and
the Stop-subgoal context input link (shows that the user intents to stop the car) form
the STOP () context actor set of input links. Also, the stopped logical condition link
(shows that the car actually stopped) and Stop-subgoal OK context link (the existence
of a token indicates that the stop the car subgoal is being satisfied) form its set of
output links. The stopped condition is then checked by the CHECK ( ) context actor
which can be further decomposed in order to fulfill the checkOK condition,
permitting (along with Go action) the PASS !/ action actor to fire.

In Figure 5 the STOP () context actor is decomposed. STOP () context actor
includes the REACH VIEW () context actor and the USE BRAKES !! action actor.
The user actions in order to drive the car in a position that gives him an appropriate
view of the crossroads, are represented by the Go event link. The actor REACH VIEW
() fires and a token is produced in the viewOK condition. This token is consumed by
the USE BRAKES !! action actor, if there is a token in the Hold action event link,
also. Then a token is produced in the shakeFeedback perception link (which can be
used in order to provide the user with real feedback through an advanced hardware
interface device, e.g. a data-glove or a cyber-data-chair), the stopped condition link
and in the Stop-subgoalOK context link. Five more graphs, with almost the same
complexity with those presented, are enough in order to complete the entire
interaction specification and design for the Crossroads example.

Fig. 5 The STOP () context actor set of input and output links are the same with these
presented inside the AND Guide actor of the previous figure. STOP () includes the REACH
VIETY () context actor and the USE BRAKES ! action actor. The condition viewOK that exist as
an output link of REACH () actor and as an input link of USE BRAKES !! is responsible for the
preservation of the correct interaction sequence.
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4 Conclusions - Future Directions

In this paper, the Interaction Specification Workspace for the specification and design
of virtual environments for training purposes, along with the VR-MFG graphical
model and the architecture components were presented. A first working prototype of
the system and two training VR applications are currently under development, one of
them presented as an example application showing the model capabilities.

ISW architecture provides the author of highly-interactive VR training applications
with the capability to specify the interactive dialogue between the trainee and the
final virtual training environment. ISW implements the “virtual programming”
concept, suggesting the use of virtual environments as 3D workspaces and authoring
tools rather than as simple 3D interactive application programs.

Further research will investigate the integration of intelligent agents’ behavior models
[1, 3, 32] into the basic VR-MFG formalism, and the ISW structure will be extended
in the same direction and new guide actors will be added, too. Also, the specification
of tutor-learner interaction sessions points to the need of establishing techniques for
specifying models of instruction (for example: tutor models the desired task, then
student practices on this, teacher coaches him and lets him accomplish the task alone
as he gains proficiency). Moreover, network features, formally substantiated will be
included [4], providing multi-user (or/and multi-agent) capabilities. The
implementation of the architecture of the Prototype Interaction Editor and the
Prototyping Mechanism which relies on the model’s formalism, will be integrated
along with a third-party VR development platform and a prototype system will be
constructed. Providing the designer with the capability to switch between the design
and prototype process, the complete ISW architecture could serve as the basic
platform for the interaction specification and design, for the design of tutorial
interactions and for the rapid prototyping of the complete Virtual Training
Environments in any application domain.

References

[1]  Bates, J. (1994). The role of emotion in belicvable agents. Communications of
the ACM, 37(7):122-125.

[2]  Bayarri,S. et al. "Virtual Reality Techniques in urban driving simulation",
Proc. Driving Simulation Conference in Real Time Systems '94 pp. 29-43.
Paris

3] Beale, R., Wood, A., “Agent-Based Interaction”, in People and Computers
[X:Proceedings of HCI *94, Glaskow, UK, August 1994, pp-239-245.

(4]  Bell, G, Parisi, A. and Pesce, M., "Virtual Reality Modeling Language:
Version 1.0 Specification", May 26, 1995.



daisy
Rectangle


[3]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[15]

Benford, S. et al., "From Rooms to Cyberspace: Models of Interaction in Large
Virtual Computer Spaces", in Interacting with Computers (Butterworth-
Heinmann), 1993.

Billinghurst, M. & Savage, J. ( 1996). Adding Intelligence to the Interface. In
Proceedings of the IEEE 1996 Virtual Reality Annual International
Symposium (pp. 168-176). Piscataway, NJ: IEEE Press.

Bolzoni, M. L. G., "Eliciting a Context for Rules of Interaction: A Taxonomy
of Metaphors for Human-Objects Communication in Virtual and Synthetic
Environments", Proceedings of the 2nd UK VR-SIG and Contributors,
December, 1, 1994, Reading, UK, pp. 78-87.

Bowman, D. A, and Hodges, L. F. "User interface constraints for immersive
virtual ~ environment applications”, TR GIT-GVU-95-26, Graphics,
Visualisation and Usability Center, Georgia Institute of Technology, USA,
1995.

Bricken, M. and Byrne, C. M., Summer Students In Virtual Reality: A Pilot
Study On Educational Applications Of Virtual Reality Technology.
(unpublished paper) Human Interface Technology Laboratory (HITL) of the
Washington Technology Center (WTC) at the University of Washington
(UW), 1992,

Burks, L., “Information Architecture: The Representation of Virtual
Environments”, Harvard University Graduate School of Design, Thesis
Document, May 1996.

Card S,, K., Robertson, G., G., Mackinley, J., D., Information Visualizer, An
Information Workspace, Proceedings of SIGCHI 1991, pp. 181-188.

Deering, M., The HoloScetch VR sketching system, Communications of the
ACM, Vol 39, No 5, May 1996, pp.54-61.

Diplas C., Giakovis D., Pintelas P., “DrIVE: A Virtual Training Environment
For Driving Behaviour”, in Proceedings of the First International Conference
on Computers and Advanced Technologies in Education (CATE 98), pp.191-
200, March 18-20, 1996, Cairo, Egypt.

Fuchs, J., and Bishop, G., “Research Directions in Virtual Environments. An
Invitational Workshop on the Future of Virtual Environments”. TR92-027,
March 1992, The University of North Carolina at Chapel Hill, Department of
Computer Science.

Gobbetti, E., Balaguer, J., F., VB2 An Architecture for Interaction in Synthetic
Worlds, Proceedings of UIST’93, November 3-5, Atlanta, Georgia, 1993,
pp.167-178.


daisy
Rectangle


[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

Harrison, M., D., and Duke, D., J., “A Review of Formalisms for Describing
Interactive Behavior”, Amodeus Project Document: System Modelling/WP28,
January 1994,

Hill, R.W., Johnson, W.L., "Situated Plan Attribution", Journal of Artificial
Intelligence in Education, (6)1, pp. 35-67, 1995.

Johnson, W.L., "Pedagogical Agents for Virtual Learning Environments”,
Proceedings of the International Conference on Computers in Education, pages
41-48, Singapore, 1995.

Kameas, A., “A Formal Model for the Specification of Interaction and the
Design of Interactive Applications”. Ph.D. Thesis, Department of Computer
Engineering, University of Patras, Greece, 1995.

Kameas, A., Diplas, C., Gerogiannis, V. and Pintelas, P., "Encapsulating
multiple perspectives in interaction specification". Proceedings of 20th
EUROMICRO Conference, Liverpool, England, September 5-10, 1994.

Laurel, B., Computers as Theatre, Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1993, p.32.

Mikropoulos, A., Diplas C., Giakovis, D., Halkidis, A., Pintelas, P., “Virtual
Reality & Education: New Tool or New Methodology?”, Proceedings of 2™
Conference on Informatics in Education, pp.57-67, November, 11-13, 1994,
Athens, Hellas.

Opdenbosch, A., and Rodriguez, W., " Interactive Visualizer: Object and View
Manipulation Algorithms", Journal of Theoretical Graphics and Computing,
STCG, Vol 6 (in press)

Pausch, R., et al, “Disney’s Aladdin: First Steps Toward Storytelling in Virtual
Reality”, Proceedings of Computer Graphics, Annual Conference Series, pp.
193-203, 1996.

Poupyrev, L, Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The Go-
Go Interaction Technique: Non-linear Mapping for Direct Manipulation in
VR. In Proceedings of UIST '96 (pp. 79-80). New York, NY: ACM

Rickel, J., and Johnson, W, L., “Integrating Pedagogical Capabilities in a
Virtual Environment Agent”, to be presented in First International Conference
on Autonomous Agents, February 1997,

Shaw, C, Green, M. , Liang J. and Sun, Y., Decoupled Simulation in Virtual
Reality with the MRToolkit. ACM Trans. On Information Systems (11-3), July
1993 p. 287.

Snowdon, D. N., West, A. J. and Howard T. L. J, "Towards the next
generation of Human-Computer Interface", Proceedings of Informatique '93:
Interface to Real & Virtual Worlds, 26-26th March 1993, Montpellier, France,
pp. 399-408. ;


daisy
Rectangle


[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

Snowdon, D., West, A., "The AVIARY Distibuted Virtual Environment",
Proceedings of the 2nd UK VR-SIG and Contributors, December, 1, 1994,
Reading, UK, pp. 39-54.

Stoakley, R., Conway, M., J., Pausch, R.. Virtual Reality on a WIM:
Interactive Worlds in Miniature. In Proceedings of ACM CHI95, Denver-
USA, May 7-11 1995.

Sturman, J. and Zeltzer, D., A Design Method for "Whole-Hand" Human-
Computer Interaction. ACM Trans. On Information Systems (11-3), July 1993,
pp- 219-238.

Tambe, M., et al, “Intelligent Agents for interactive simulation environments”.
Al Magazine, 16(1), pp. 15-39, Spring 1995.

VRT 3.60, Superscape Ltd., Reference Manual.

Ware, C., Franck, G., "Viewing a graph in a Virtual Reality Display is Three
Times as Good as a 2D Diagram", Proceedings of 1994 IEEE Conference on
Visual Languages, S. Louis, Missouri, USA, October, 1994, pp. 182-183.

Whitelock, D., Brna, P., Holland, S., What is the value of virtual reality for
conceptual learning? Towards a theoretical framework. In Proceedings of
European Conference on Al in Education (in press), 1996, Lisbon, Portugal.

World Up, Sense8 Corporation., User & Reference Manual, 1996.


daisy
Rectangle


